

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education (9–1)

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0980/41

Paper 4 (Extended) October/November 2019

2 hours 30 minutes

Candidates answer on the Question Paper.

Additional Materials: Electronic calculator Geometrical instruments

Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.

Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

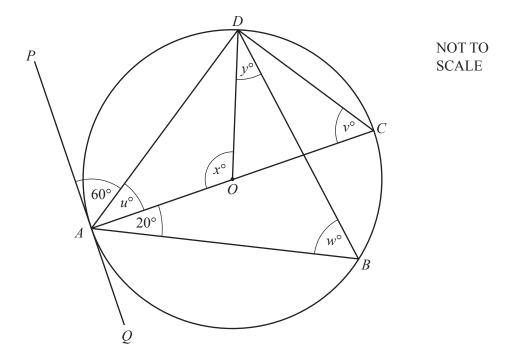
For π , use either your calculator value or 3.142.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 130.

This document consists of 16 printed pages.

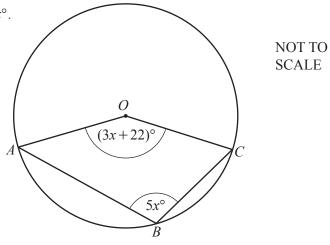


(a)	The sizes of angles in a quadrilateral are in the ratio 1:2	2:3:4.
	(i) Calculate the size of each angle.	
		[2]
		, , , [2]
	(ii) Write down the mathematical name of a special quadratical nam	drilateral that can be drawn with these angles.
		[1]
(b)	The angles of a triangle are x° , $\left(\frac{x+1}{2}\right)^{\circ}$ and $(x+7)^{\circ}$.	
	Find the value of x .	
		x = [3]
(c)	A regular polygon has 72 sides.	»[5]
(0)	Find the size of an interior angle.	
	Tima the size of an interior angle.	
		[3]
		[3]

© UCLES 2019 0980/41/O/N/19

1

(d)


A, B, C and D lie on the circle, centre O, with diameter AC. PQ is a tangent to the circle at A. Angle $PAD = 60^{\circ}$ and angle $BAC = 20^{\circ}$.

Find the values of u, v, w, x and y.

 $u = \dots, v = \dots, y = \dots, y = \dots, y = \dots$ [6]

(e) A, B and C lie on the circle, centre O. Angle $AOC = (3x + 22)^{\circ}$ and angle $ABC = 5x^{\circ}$.

Find the value of x.

 $x = \dots$ [4]

2	(a)	Ali and Mo share a sum of money in the ratio Ali: Mo = Ali receives \$600 more than Mo.	= 9:7.
		Calculate how much each receives.	
			Ali \$
			Mo \$[3]
	(b)	In a sale, Ali buys a television for \$195.80. The original price was \$220.	
		Calculate the percentage reduction on the original price.	
			% [3]
	(c)	In the sale, Mo buys a jacket for \$63. The original price was reduced by 25%.	
		Calculate the original price of the jacket.	
			\$[3]

(a)	Dina invests \$600 for 5 years at a rate of 2% per year compound	and interest.
	Calculate the value of this investment at the end of the 5 years	3.
		\$[2]
(b)	The value of a gold ring increases exponentially at a rate of 50. The value is now \$882.	% per year.
	(i) Calculate the value of the ring 2 years ago.	
		\$[2]
	(ii) Find the number of complete years it takes for the ring greater than \$1100.	g's value of \$882 to increase to a value
		[2]

3

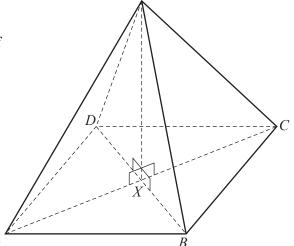
			6	
4 (a	a)	(i)	Calculate the external curved surface area of a cylinder wi	th radius 8 m and height 19 m.
				m ² [2]
		(ii)	This surface is painted at a cost of \$0.85 per square metre.	
			Calculate the cost of painting this surface.	
				To.
				[2]
(I	b)		olid metal sphere with radius 6 cm is melted down and all of h radius 8 cm.	the metal is used to make a solid cone
			culate the curved surface area of the cone.	
			e volume, V , of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]	
		[The	e volume, V, of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2$	^{2}h .]
		[The	e curved surface area, A , of a cone with radius r and slant hei	ght l is $A = \pi r l$.
				2
© UCLE	S 20)19	0980/41/O/N/19	cm ² [5]

https://xtremepape.rs/

(c) Two cones are mathematically similar.

The total surface area of the smaller cone is 80 cm².

The total surface area of the larger cone is 180 cm².

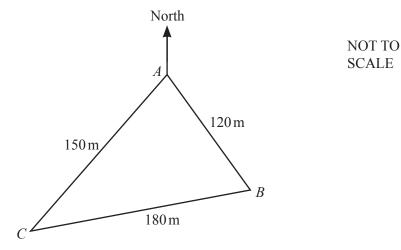

The volume of the smaller cone is 168 cm³.

Calculate the volume of the larger cone.

..... cm³ [3]

(d) The diagram shows a pyramid with a square base ABCD.DB = 8 cm.P is vertically above the centre, X, of

P is vertically above the centre, X, of the base and PX = 5 cm.



NOT TO SCALE

Calculate the angle between *PB* and the base *ABCD*.

.....[3]

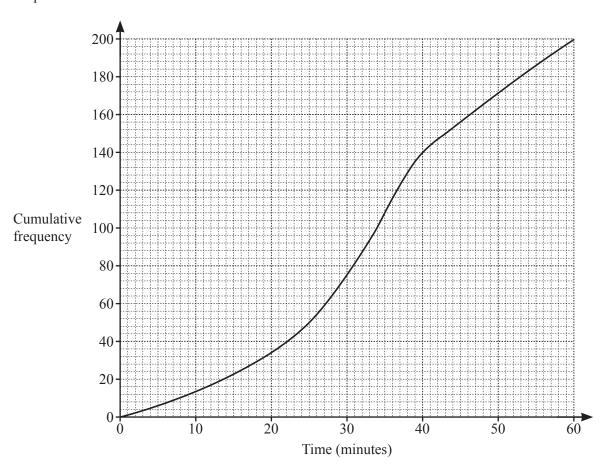
5

The diagram shows a triangular field, ABC, on horizontal ground.

(a) Olav runs from A to B at a constant speed of 4 m/s and then from B to C at a constant speed of 3 m/s. He then runs at a constant speed from C to A. His average speed for the whole journey is 3.6 m/s.

Calculate his speed when he runs from C to A.

 m/s	[3]


(b) Use the cosine rule to find angle *BAC*.

Angle
$$BAC = \dots$$
 [4]

(c)	The	bearing of C from A is 210° .	
	(i)	Find the bearing of B from A .	
	(ii)	Find the bearing of A from B .	 [1]
(d)	D is	s the point on AC that is nearest to B .	 [2]
(u)			
	Cal	culate the distance from D to A .	

..... m [2]

6 (a) The cumulative frequency diagram shows information about the times taken by 200 students to solve a problem.

Use the cumulative frequency diagram to find an estimate for

(i)	the median,	min [1
-----	-------------	-------	---

(ii) the interquartile range,

..... min [2]

(iii) the number of students who took more than 40 minutes.

10	
 [4]	

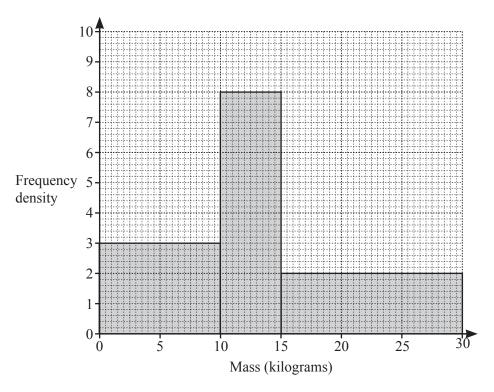
(b) Roberto records the value of each of the coins he has at home. The table shows the results.

Value (cents)	1	2	5 10		20	50	
Frequency	3	1	3	2	4	2	

(i)	Find the range.		cents	[1	[]
-----	-----------------	--	-------	----	----

(ii) Find the mode. cents [1]

(iii) Find the median. cents [1]


	(:)	Wastra	4 41 4	.4.1	1	Roberto's	
((17)	WOIK	յաւ աթ ւ	otai va	iiue oi	Kobello S	COMS

..... cents [2]

(v) Work out the mean.

..... cents [1]

(c) The histogram shows information about the masses of 100 boxes.

Calculate an estimate of the mean.

..... kg [6]

7	(a)	Oranges cost x per kilogram and apples cost $(x-0.6)$ per kilogram. The total cost of 2 kg of oranges and 1.75 kg of apples is 19.20 .
		Find the value of x .
		$x = \dots $ [3]
	(b)	The cost of one ruler is r cents. The cost of one protractor is p cents.
		The total cost of 5 rulers and 1 protractor is 245 cents. The total cost of 2 rulers and 3 protractors is 215 cents.
		Write down two equations in terms of r and p and solve these equations to find the cost of one protractor.
		cents [5]

(c)		ol walks $12 \mathrm{km}$ at $x \mathrm{km/h}$ and then a further $6 \mathrm{km}$ at $(x-1) \mathrm{km/h}$. total time taken is 5 hours.	
	(i)	Write an equation, in terms of x, and show that it simplifies to $5x^2 - 23x + 12 = 0$.	
	(**)		3]
	(ii)	Factorise $5x^2 - 23x + 12$.	
		[2	2]
	(iii)	Solve the equation $5x^2 - 23x + 12 = 0$.	
		$x = \dots \text{ or } x = \dots$	1]
	(iv)	Write down Carol's walking speed during the final 6km.	
		ı n r	17
		km/h [1	IJ

8

•	•	•		•	•	•	• • •		•	•		•	•	
The	diagra	am show	s 5 card	ds.										
(a)	Dona	ald choos	ses a ca	rd at rar	ndom.									
	(i)	Write do	own the	probab	ility that	the num	ber of do	ts on thi	is card	is an eve	en nu	mber.		
														[1]
	(ii)	Write do	own the	probab	ility that	the num	ber of do	ts on thi	is card	is a prin	ne nui	mber.		
									••••					[1]
(b)							om, witho	_	cemen	t.				
	(i)	Find the	probab	oility tha	at the tota	ıl numbe	er of dots	is 5.						

(ii) Find the probability that the total number of dots is an odd number.

.....[3]

.....[3]

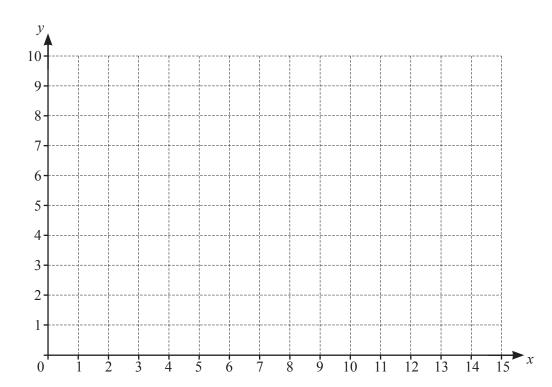
9 A car hire company has x small cars and y large cars.

The company has at least 6 cars in total.

The number of large cars is less than or equal to the number of small cars.

The largest number of small cars is 8.

(a) Write down three inequalities, in terms of x and/or y, to show this information.


					Γ.	2 7
•••••	,	•••••	,	•••••	L-	ر ر

(b) A small car can carry 4 people and a large car can carry 6 people. One day, the largest number of people to be carried is 60.

Show that $2x + 3y \le 30$.

[1]

(c)

By shading the **unwanted** regions on the grid, show and label the region R that satisfies all four inequalities. [6]

(d) (i) Find the number of small cars and the number of large cars needed to carry exactly 60 people.

...... small cars, large cars [1]

(ii) When the company uses 7 cars, find the largest number of people that can be carried.

.....[2]

Question 10 is printed on the next page.

10 (a) Complete the table for the 5th term and the *n*th term of each sequence.

1st term	2nd term	3rd term	4th term	5th term	nth term
4	8	12	16		
0	1	4	9		
0	7	26	63		
1/4	$\frac{1}{2}$	1	2		

[11]

(b) 0, 1, 1, 2, 3, 5, 8, 13, 21,

This sequence is a Fibonacci sequence.

After the first two terms, the rule to find the next term is "add the two previous terms". For example, 5+8=13.

Use this rule to complete each of the following Fibonacci sequences.

- (c) $\frac{1}{3}$, $\frac{3}{4}$, $\frac{4}{7}$, $\frac{7}{11}$, $\frac{11}{18}$, ...
 - (i) One term of this sequence is $\frac{p}{q}$.

Find, in terms of p and q, the next term in this sequence.

.....[1]

(ii) Find the 6th term of this sequence.

.....[1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.